Stereospecific Synthesis of Chiral Acetic Acid from Glycine

By MASAHIRO KAJIWARA, S.-F. LEE, and A. IAN SCOTT* (Department of Chemistry, Texas A & M University, College Station, Texas 77843)

and M. AKHTAR, C. R. JONES, and PETER M. JORDAN (Department of Biochemistry, University of Southampton, Southampton SO9 3TU)

Summary A convenient chemical synthesis of (2R)- $[^{1}H,^{2}H,^{3}H]$ acetic acid from (2R)- $[^{2}H]$ glycine in high (92%) optical yield is described.

The use of chiral acetic acid, first introduced for the solution of biosynthetic problems by Cornforth¹ and Arigoni² in 1969, continues apace³ and a new synthesis has been reported.⁴ Our requirement for substantial (1-5 g) quantities of

SCHEME 1. i, HLAD, NAD⁺, 1-[²H or ³H]cyclohexan-1-ol, (78%); ii, propane-1,3-dithiol, BuⁿLi, D₂O(TH₂O), (90%); iii, CuCl₂, CuO, (86%); iv, HLAD, NAD⁺, EtOH, (80%) or Na₂S₂O₄, H₂O, (70%); v, TSCl, NaN₃, (86%); vi, LiAlH₄, (92%); vii, RuO₄,⁷ (39%); viii, Ac₂O, pyridine, (94%); ix, O₃, HCO₂H, CHCl₃, H₂O₂, (60%);⁸ x, hog kidney acylase I, (93%).⁸ HLAD = Horse liver alcohol dehydrogenase. Ts=MeC₈H₄SO₂-p.

chiral glycine has led to an improved sequence for the preparation of this species (R or S; ${}^{2}H$ or ${}^{3}H$) as summarized in Scheme 1, which includes several modifications of literature procedure,⁵ and which provides a viable synthetic method to chiral acetate.

Starting from [¹H]benzaldehyde (1), (4a; $R^2 = {}^{2}H$ or ${}^{3}H$) is prepared in 78% overall yield whilst (4b; $R^1 = {}^{2}H$ or ${}^{3}H$) is synthesized from (3; $R = {}^{2}H$ or ${}^{3}H$) in 80% yield. Compounds (4a, b) are then converted as shown, with one inversion of configuration $(5 \rightarrow 6)$ into the (R)-(10b) and (S)-(10a) $[{}^{2}H_{1} \text{ (or }{}^{3}H_{1})]$ glycines $[ca. 92-96\% {}^{2}H (m/e 76)$ by mass spectrometry], respectively. The absolute configuration of each ²H species was established by comparison of the o.r.d. curves with the published data.⁶

A sample of (R)-[²H₁]glycine (optical purity, 96%) was converted (0.5—1.0 g scale) into (R)-[²H]bromoacetic acid $(m/e \ 139.141; M^+)$ (retention) and the latter reduced to $(2S)-[{}^{1}H_{1}, {}^{2}H_{1}, {}^{3}H_{1}]$ ethanol with lithium aluminium tritide (inversion) as shown in Scheme 2. Without isolation,

SCHEME 2. i, NaNO, KBr, H+, 0 °C, 1 h, 5%; ii, LiAlT, (50 mCi mmol⁻¹); iii, Cr₂O₇²⁻.

chromic acid oxidation of the evaporated, ethereal extract from this reduction furnished a specimen of chiral acetic acid whose configuration was determined by the coupled enzyme assay^{1,2} to be (R)-[²H₁,³H₁] (92% optical purity measured on a 1 mCi mmol⁻¹ sample). The use of these samples now easily available in 100-500 mg quantities in porphyrin and corrin biosynthesis is under investigation. We thank N.I.H. for support of this work.

(Received, 1st August 1978; Com. 846.)

¹ J. W. Cornforth, J. W. Redmond, H. Eggerer, W. Buckel, and C. Gutschow, Nature, 1969, 221, 1212; 1970, 226, 517.

² J. W. Cornforth, J. W. Redmond, H. Eggerer, W. Bucker, and C. Gutschow, *Nature*, 1909, 221, 1212, 1910, 220, 517.
² J. Lüthy, J. Rétey, and D. Arigoni, *Nature*, 1969, 221, 1213; 1970, 226, 519.
³ E. Schleicher, K. Mascaro, R. Potts, D. R. Mann, and H. G. Floss, *J. Amer. Chem. Soc.*, 1976, 98, 1043; C. Tatum, J. Vederas, E. Schleicher, S. J. Benkovic, and H. G. Floss, *J.C.S. Chem. Comm.*, 1977, 218; B. Sedgwick and J. W. Cornforth, *European J. Biochem.*, 1977, 75, 465; B. Sedgwick, J. W. Cornforth, S. J. French, R. T. Gray, E. Kelstrup, and P. Willadsen, *ibid.*, 1977, 75, 481.

⁴C. A. Townsend, T. Scholl, and D. Arigoni, J.C.S. Chem. Comm., 1975, 921.
⁵A. Streitwieser, Jr. and J. R. Wolfe, Jr., J. Org. Chem., 1963, 28, 3263; D. Seebach, B. W. Erickson, and G. Singh, *ibid.*, 1966, 31, 4303; P. Besmer and D. Arigoni, Chimia, 1968, 22, 494; P. Besmer, Diss. No. 4435, E.T.H., Zürich, 1970.

P. M. Jordan and M. Akhtar, Biochem. J., 1970, 116, 277; W. L. F. Armarego, B. A. Milloy, and W. Pendergast, J.C.S. Perkin I, 1976, 2229. 7 S. Wolfe, S. K. Hasan, and J. R. Campbell, Chem. Comm., 1970, 1420.

A. R. Battersby, J. Staunton, and M. C. Summers, J.C.S. Chem. Comm., 1974, 548; J.C.S. Perkin I, 1976, 1052.